Many different classifications of circuit breakers can be made, based on their features such as voltage class, construction type, interrupting type, and structural features.
Low-voltage circuit breakers
An air circuit breaker for low-voltage
(less than 1,000 volt) power distribution
switchgear .
Low-voltage (less than 1,000 VAC) types are common in domestic, commercial and industrial
application, and include:
(less than 1,000 volt) power distribution
switchgear .
Low-voltage (less than 1,000 VAC) types are common in domestic, commercial and industrial
application, and include:
- Miniature circuit breaker (MCB)—rated current not more than 100 A. Trip characteristics normally not adjustable. Thermal or thermal-magnetic operation. Breakers illustrated above are in this category.
There are three main types of MCBs:
- Type B - trips between 3 and 5 times full load current;
- Type C - trips between 5 and 10 times full load current;
- Type D - trips between 10 and 20 times full load current.
In the UK all MCBs must be selected in accordance with BS 7671.
- Molded Case Circuit Breaker (MCCB)—rated current up to 2,500 A. Thermal or thermal-magnetic operation. Trip current may be adjustable in larger ratings.
- Low-voltage power circuit breakers can be mounted in multi-tiers in low-voltage switchboards or switchgear cabinets.
The characteristics of low-voltage circuit breakers are given by international standards such as IEC 947. These circuit breakers are often installed in draw-out enclosures that allow removal and interchange without dismantling the switchgear.
Large low-voltage molded case and power circuit breakers may have electric motor operators so they can open and close under remote control. These may form part of an automatic transfer switch system for standby power.
Low-voltage circuit breakers are also made for direct-current (DC) applications, such as DC for subway lines. Direct current requires special breakers because the arc is continuous—unlike an AC arc, which tends to go out on each half cycle. A direct current circuit breaker has blow-out coils that generate a magnetic field that rapidly stretches the arc. Small circuit breakers are either installed directly in equipment, or are arranged in a breaker panel.
TheDIN rail-mounted thermal-magnetic miniature circuit breaker is the most common style in modern domestic consumer units and commercial electricaldistribution boards throughout Europe. The design includes the following components:
- Actuator lever - used to manually trip and reset the circuit breaker. Also indicates the status of the circuit breaker (On or Off/tripped). Most breakers are designed so they can still trip even if the lever is held or locked in the "on" position. This is sometimes referred to as "free trip" or "positive trip" operation.
- Actuator mechanism - forces the contacts together or apart.
- Contacts - allow current when touching and break the current when moved apart.
- Terminals
- Bimetallic strip - separates contacts in response to smaller, longer-term overcurrents
- Calibration screw - allows the manufacturer to precisely adjust the trip current of the device after assembly.
- Solenoid - separates contacts rapidly in response to high overcurrents
- Arc divider/extinguisher
Magnetic circuit breakers
Magnetic circuit breakers use a solenoid ( electomagnet ) whose pulling force increases with the current . Certain designs utilize electromagnetic forces in addition to those of the solenoid. The circuit breaker contacts are held closed by a latch. As the current in the solenoid increases beyond the rating of the circuit breaker, the solenoid's pull releases the latch, which lets the contacts open by spring action. Some magnetic breakers incorporate a hydraulic time delay feature using a viscous fluid. A spring restrains the core until the current exceeds the breaker rating. During an overload, the speed of the solenoid motion is restricted by the fluid. The delay permits brief current surges beyond normal running current for motor starting, energizing equipment, etc. Short circuit currents provide sufficient solenoid force to release the latch regardless of core position thus bypassing the delay feature. Ambient temperature affects the time delay but does not affect the current rating of a magnetic breaker
Thermal magnetic circuit breakers
Thermal magnetic circuit breakers, which are the type found in most distribution boards, incorporate both techniques with the electromagnet responding instantaneously to large surges in current (short circuits) and the bimetallic strip responding to less extreme but longer-term over-current conditions. The thermal portion of the circuit breaker provides an "inverse time" response feature, which trips the circuit breaker sooner for larger overcurrents but allows smaller overloads to persist for a longer time. On very large over-currents during a short-circuit, the magnetic element trips the circuit breaker with no intentional additional delay.
Common trip breakers
When supplying a branch circuit with more than one live conductor, each live conductor must be protected by a breaker pole. To ensure that all live conductors are interrupted when any pole trips, a "common trip" breaker must be used. These may either contain two or three tripping mechanisms within one case, or for small breakers, may externally tie the poles together via their operating handles. Two-pole common trip breakers are common on 120/240-volt systems where 240 volt loads (including major appliance or further distribution boards) span the two live wires. Three-pole common trip breakers are typically used to supply three-phase electric power to large motors or further distribution boards.
Two- and four-pole breakers are used when there is a need to disconnect multiple phase AC, or to disconnect the neutral wire to ensure that no current flows through the neutral wire from other loads connected to the same network when workers may touch the wires during maintenance. Separate circuit breakers must never be used for live and neutral, because if the neutral is disconnected while the live conductor stays connected, a dangerous condition arises: the circuit appears de-energized (appliances don't work), but wires remain live and some RCDs may not trip if someone touches the live wire (because some RCDs need power to trip). This is why only common trip breakers must be used when neutral wire switching is needed.
Medium-voltage circuit breakers
Medium-voltage circuit breakers rated between 1 and 72 kV may be assembled into metal-enclosed switchgear line ups for indoor use, or may be individual components installed outdoors in a substation. Air-break circuit breakers replaced oil-filled units for indoor applications, but are now themselves being replaced by vacuum circuit breakers (up to about 40.5 kV). Like the high voltage circuit breakers described below, these are also operated by current sensing protective relays operated through current transformer . The characteristics of MV breakers are given by international standards such as IEC 62271. Medium-voltage circuit breakers nearly always use separate current sensors and protective relays, instead of relying on built-in thermal or magnetic overcurrent sensors.
Medium-voltage circuit breakers can be classified by the medium used to extinguish the arc:
- Vacuum circuit breakers—With rated current up to 6,300 A, and higher for generator circuit breakers. These breakers interrupt the current by creating and extinguishing the arc in a vacuum container - aka "bottle". Long life bellows are designed to travel the 6–10 mm the contacts must part. These are generally applied for voltages up to about 40,500 V. which corresponds roughly to the medium-voltage range of power systems. Vacuum circuit breakers tend to have longer life expectancies between overhaul than do air circuit breakers.
- Air circuit breakers—Rated current up to 6,300 A and higher for generator circuit breakers. Trip characteristics are often fully adjustable including configurable trip thresholds and delays. Usually electronically controlled, though some models are microprocessor controlled via an integral electronic trip unit. Often used for main power distribution in large industrial plant, where the breakers are arranged in draw-out enclosures for ease of maintenance.
- SF6 circuit breakers extinguish the arc in a chamber filled with sulfure hexafluoride gas.
Medium-voltage circuit breakers may be connected into the circuit by bolted connections to bus bars or wires, especially in outdoor switchyards. Medium-voltage circuit breakers in switchgear line-ups are often built with draw-out construction, allowing breaker removal without disturbing power circuit connections, using a motor-operated or hand-cranked mechanism to separate the breaker from its enclosure. Some important manufacturer of VCB from 3.3 kV to 38 kV are ABB, Eaton, Siemens, HHI(Hyundai Heavy Industry), S&C Electric Company, Jyoti and BHEL.
High-voltage circuit breakers
Electrical power transmission networks are protected and controlled by high-voltage breakers. The definition of high voltage varies but in power transmission work is usually thought to be 72.5 kV or higher, according to a recent definition by the International Electrotechnical Commition (IEC). High-voltage breakers are nearly always solenoid-operated, with current sensing protective relay operated through current transformers. In substations the protective relay scheme can be complex, protecting equipment and buses from various types of overload or ground/earth fault.
High-voltage breakers are broadly classified by the medium used to extinguish the arc.
- Bulk oil
- Minimum oil
- Air blast
- Vacuum
- SF6
- Co2
Due to environmental and cost concerns over insulating oil spills, most new breakers use SF6 gas to quench the arc.
Circuit breakers can be classified as live tank, where the enclosure that contains the breaking mechanism is at line potential, or dead tank with the enclosure at earth potential. High-voltage AC circuit breakers are routinely available with ratings up to 765 kV. 1,200 kV breakers were launched by Siemens in November 2011, followed by ABB in April the following year.
High-voltage circuit breakers used on transmission systems may be arranged to allow a single pole of a three-phase line to trip, instead of tripping all three poles; for some classes of faults this improves the system stability and availability.
Hgh voltage direct current circuit breakers are still a field of research as of 2015. Such breakers would be useful to interconnect HVDC transmission systems.
Sulfur hexafluoride (SF6) high-voltage circuit breakers
A sulfur hexafluoride circuit breaker uses contacts surrounded by sulfur hexafluoride gas to quench the arc. They are most often used for transmission-level voltages and may be incorporated into compact gas-insulated switchgear. In cold climates, supplemental heating or de-rating of the circuit breakers may be required due to liquefaction of the SF6 gas.
Disconnecting circuit breaker (DCB)
The disconnecting circuit breaker (DCB) was introduced in 2000 and is a high-voltage circuit breaker modeled after the SF6-breaker. It presents a technical solution where the disconnecting function is integrated in the breaking chamber, eliminating the need for separate disconnectors. This increases the availability , since open-air disconnecting switch main contacts need maintenance every 2–6 years, while modern circuit breakers have maintenance intervals of 15 years. Implementing a DCB solution also reduces the space requirements within the substation, and increases the reliability, due to the lack of separate disconnectors.
In order to further reduce the required space of substation, as well as simplifying the design and engineering of the substation, a fiber optic current sensor (FOCS) can be integrated with the DCB. A 420 kV DCB with integrated FOCS can reduce a substation’s footprint with over 50% compared to a conventional solution of live tank breakers with disconnectors and current transformers, due to reduced material and no additional insulation medium.
Carbon dioxide (CO2) high-voltage circuit breakers
In 2012 ABB presented a 75 kV high-voltage breaker that uses carbon dioxide as the medium to extinguish the arc. The carbon dioxide breaker works on the same principles as an SF6 breaker and can also be produced as a disconnecting circuit breaker. By switching from SF6 to CO2 it is possible to reduce the CO2 emissions by 10 tons during the product’s life cycle.
follow us :
https://www.youtube.com/channel/UC8uzr-PXQxLpAiVKA7S1rRQ?disable_polymer=true
https://www.facebook.com/Engi.Prog/?ref=bookmarks